3.16.12 \(\int \frac {(a+b x)^{9/2}}{(c+d x)^{5/2}} \, dx\) [1512]

Optimal. Leaf size=204 \[ -\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {105 b^2 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 d^5}-\frac {35 b^2 (b c-a d) (a+b x)^{3/2} \sqrt {c+d x}}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {105 b^{3/2} (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 d^{11/2}} \]

[Out]

-2/3*(b*x+a)^(9/2)/d/(d*x+c)^(3/2)-105/8*b^(3/2)*(-a*d+b*c)^3*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1
/2))/d^(11/2)-6*b*(b*x+a)^(7/2)/d^2/(d*x+c)^(1/2)-35/4*b^2*(-a*d+b*c)*(b*x+a)^(3/2)*(d*x+c)^(1/2)/d^4+7*b^2*(b
*x+a)^(5/2)*(d*x+c)^(1/2)/d^3+105/8*b^2*(-a*d+b*c)^2*(b*x+a)^(1/2)*(d*x+c)^(1/2)/d^5

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {49, 52, 65, 223, 212} \begin {gather*} -\frac {105 b^{3/2} (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 d^{11/2}}+\frac {105 b^2 \sqrt {a+b x} \sqrt {c+d x} (b c-a d)^2}{8 d^5}-\frac {35 b^2 (a+b x)^{3/2} \sqrt {c+d x} (b c-a d)}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(9/2)/(c + d*x)^(5/2),x]

[Out]

(-2*(a + b*x)^(9/2))/(3*d*(c + d*x)^(3/2)) - (6*b*(a + b*x)^(7/2))/(d^2*Sqrt[c + d*x]) + (105*b^2*(b*c - a*d)^
2*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*d^5) - (35*b^2*(b*c - a*d)*(a + b*x)^(3/2)*Sqrt[c + d*x])/(4*d^4) + (7*b^2*(
a + b*x)^(5/2)*Sqrt[c + d*x])/d^3 - (105*b^(3/2)*(b*c - a*d)^3*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c
 + d*x])])/(8*d^(11/2))

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(a+b x)^{9/2}}{(c+d x)^{5/2}} \, dx &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}+\frac {(3 b) \int \frac {(a+b x)^{7/2}}{(c+d x)^{3/2}} \, dx}{d}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {\left (21 b^2\right ) \int \frac {(a+b x)^{5/2}}{\sqrt {c+d x}} \, dx}{d^2}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {\left (35 b^2 (b c-a d)\right ) \int \frac {(a+b x)^{3/2}}{\sqrt {c+d x}} \, dx}{2 d^3}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}-\frac {35 b^2 (b c-a d) (a+b x)^{3/2} \sqrt {c+d x}}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}+\frac {\left (105 b^2 (b c-a d)^2\right ) \int \frac {\sqrt {a+b x}}{\sqrt {c+d x}} \, dx}{8 d^4}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {105 b^2 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 d^5}-\frac {35 b^2 (b c-a d) (a+b x)^{3/2} \sqrt {c+d x}}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {\left (105 b^2 (b c-a d)^3\right ) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{16 d^5}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {105 b^2 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 d^5}-\frac {35 b^2 (b c-a d) (a+b x)^{3/2} \sqrt {c+d x}}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {\left (105 b (b c-a d)^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{8 d^5}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {105 b^2 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 d^5}-\frac {35 b^2 (b c-a d) (a+b x)^{3/2} \sqrt {c+d x}}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {\left (105 b (b c-a d)^3\right ) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{8 d^5}\\ &=-\frac {2 (a+b x)^{9/2}}{3 d (c+d x)^{3/2}}-\frac {6 b (a+b x)^{7/2}}{d^2 \sqrt {c+d x}}+\frac {105 b^2 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 d^5}-\frac {35 b^2 (b c-a d) (a+b x)^{3/2} \sqrt {c+d x}}{4 d^4}+\frac {7 b^2 (a+b x)^{5/2} \sqrt {c+d x}}{d^3}-\frac {105 b^{3/2} (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 d^{11/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.39, size = 165, normalized size = 0.81 \begin {gather*} -\frac {(a+b x)^{9/2} \left (16 d^4+\frac {144 b d^3 (c+d x)}{a+b x}-\frac {693 b^2 d^2 (c+d x)^2}{(a+b x)^2}+\frac {840 b^3 d (c+d x)^3}{(a+b x)^3}-\frac {315 b^4 (c+d x)^4}{(a+b x)^4}\right )}{24 d^5 (c+d x)^{3/2}}-\frac {105 b^{3/2} (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{8 d^{11/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(9/2)/(c + d*x)^(5/2),x]

[Out]

-1/24*((a + b*x)^(9/2)*(16*d^4 + (144*b*d^3*(c + d*x))/(a + b*x) - (693*b^2*d^2*(c + d*x)^2)/(a + b*x)^2 + (84
0*b^3*d*(c + d*x)^3)/(a + b*x)^3 - (315*b^4*(c + d*x)^4)/(a + b*x)^4))/(d^5*(c + d*x)^(3/2)) - (105*b^(3/2)*(b
*c - a*d)^3*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[a + b*x])])/(8*d^(11/2))

________________________________________________________________________________________

Maple [F]
time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (b x +a \right )^{\frac {9}{2}}}{\left (d x +c \right )^{\frac {5}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(9/2)/(d*x+c)^(5/2),x)

[Out]

int((b*x+a)^(9/2)/(d*x+c)^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(9/2)/(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 427 vs. \(2 (164) = 328\).
time = 1.46, size = 879, normalized size = 4.31 \begin {gather*} \left [-\frac {315 \, {\left (b^{4} c^{5} - 3 \, a b^{3} c^{4} d + 3 \, a^{2} b^{2} c^{3} d^{2} - a^{3} b c^{2} d^{3} + {\left (b^{4} c^{3} d^{2} - 3 \, a b^{3} c^{2} d^{3} + 3 \, a^{2} b^{2} c d^{4} - a^{3} b d^{5}\right )} x^{2} + 2 \, {\left (b^{4} c^{4} d - 3 \, a b^{3} c^{3} d^{2} + 3 \, a^{2} b^{2} c^{2} d^{3} - a^{3} b c d^{4}\right )} x\right )} \sqrt {\frac {b}{d}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d^{2} x + b c d + a d^{2}\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {b}{d}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) - 4 \, {\left (8 \, b^{4} d^{4} x^{4} + 315 \, b^{4} c^{4} - 840 \, a b^{3} c^{3} d + 693 \, a^{2} b^{2} c^{2} d^{2} - 144 \, a^{3} b c d^{3} - 16 \, a^{4} d^{4} - 2 \, {\left (9 \, b^{4} c d^{3} - 25 \, a b^{3} d^{4}\right )} x^{3} + 3 \, {\left (21 \, b^{4} c^{2} d^{2} - 60 \, a b^{3} c d^{3} + 55 \, a^{2} b^{2} d^{4}\right )} x^{2} + 2 \, {\left (210 \, b^{4} c^{3} d - 567 \, a b^{3} c^{2} d^{2} + 477 \, a^{2} b^{2} c d^{3} - 104 \, a^{3} b d^{4}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{96 \, {\left (d^{7} x^{2} + 2 \, c d^{6} x + c^{2} d^{5}\right )}}, \frac {315 \, {\left (b^{4} c^{5} - 3 \, a b^{3} c^{4} d + 3 \, a^{2} b^{2} c^{3} d^{2} - a^{3} b c^{2} d^{3} + {\left (b^{4} c^{3} d^{2} - 3 \, a b^{3} c^{2} d^{3} + 3 \, a^{2} b^{2} c d^{4} - a^{3} b d^{5}\right )} x^{2} + 2 \, {\left (b^{4} c^{4} d - 3 \, a b^{3} c^{3} d^{2} + 3 \, a^{2} b^{2} c^{2} d^{3} - a^{3} b c d^{4}\right )} x\right )} \sqrt {-\frac {b}{d}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {b}{d}}}{2 \, {\left (b^{2} d x^{2} + a b c + {\left (b^{2} c + a b d\right )} x\right )}}\right ) + 2 \, {\left (8 \, b^{4} d^{4} x^{4} + 315 \, b^{4} c^{4} - 840 \, a b^{3} c^{3} d + 693 \, a^{2} b^{2} c^{2} d^{2} - 144 \, a^{3} b c d^{3} - 16 \, a^{4} d^{4} - 2 \, {\left (9 \, b^{4} c d^{3} - 25 \, a b^{3} d^{4}\right )} x^{3} + 3 \, {\left (21 \, b^{4} c^{2} d^{2} - 60 \, a b^{3} c d^{3} + 55 \, a^{2} b^{2} d^{4}\right )} x^{2} + 2 \, {\left (210 \, b^{4} c^{3} d - 567 \, a b^{3} c^{2} d^{2} + 477 \, a^{2} b^{2} c d^{3} - 104 \, a^{3} b d^{4}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{48 \, {\left (d^{7} x^{2} + 2 \, c d^{6} x + c^{2} d^{5}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(9/2)/(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

[-1/96*(315*(b^4*c^5 - 3*a*b^3*c^4*d + 3*a^2*b^2*c^3*d^2 - a^3*b*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*
a^2*b^2*c*d^4 - a^3*b*d^5)*x^2 + 2*(b^4*c^4*d - 3*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 - a^3*b*c*d^4)*x)*sqrt(b/d
)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c*d + a*d^2)*sqrt(b*x + a)*sqrt(d*x + c
)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) - 4*(8*b^4*d^4*x^4 + 315*b^4*c^4 - 840*a*b^3*c^3*d + 693*a^2*b^2*c^2*d^
2 - 144*a^3*b*c*d^3 - 16*a^4*d^4 - 2*(9*b^4*c*d^3 - 25*a*b^3*d^4)*x^3 + 3*(21*b^4*c^2*d^2 - 60*a*b^3*c*d^3 + 5
5*a^2*b^2*d^4)*x^2 + 2*(210*b^4*c^3*d - 567*a*b^3*c^2*d^2 + 477*a^2*b^2*c*d^3 - 104*a^3*b*d^4)*x)*sqrt(b*x + a
)*sqrt(d*x + c))/(d^7*x^2 + 2*c*d^6*x + c^2*d^5), 1/48*(315*(b^4*c^5 - 3*a*b^3*c^4*d + 3*a^2*b^2*c^3*d^2 - a^3
*b*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3*b*d^5)*x^2 + 2*(b^4*c^4*d - 3*a*b^3*c^3*d^
2 + 3*a^2*b^2*c^2*d^3 - a^3*b*c*d^4)*x)*sqrt(-b/d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c
)*sqrt(-b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + 2*(8*b^4*d^4*x^4 + 315*b^4*c^4 - 840*a*b^3*c^3*d + 693
*a^2*b^2*c^2*d^2 - 144*a^3*b*c*d^3 - 16*a^4*d^4 - 2*(9*b^4*c*d^3 - 25*a*b^3*d^4)*x^3 + 3*(21*b^4*c^2*d^2 - 60*
a*b^3*c*d^3 + 55*a^2*b^2*d^4)*x^2 + 2*(210*b^4*c^3*d - 567*a*b^3*c^2*d^2 + 477*a^2*b^2*c*d^3 - 104*a^3*b*d^4)*
x)*sqrt(b*x + a)*sqrt(d*x + c))/(d^7*x^2 + 2*c*d^6*x + c^2*d^5)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(9/2)/(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 500 vs. \(2 (164) = 328\).
time = 0.96, size = 500, normalized size = 2.45 \begin {gather*} \frac {{\left ({\left ({\left (2 \, {\left (b x + a\right )} {\left (\frac {4 \, {\left (b^{6} c d^{8} - a b^{5} d^{9}\right )} {\left (b x + a\right )}}{b^{2} c d^{9} {\left | b \right |} - a b d^{10} {\left | b \right |}} - \frac {9 \, {\left (b^{7} c^{2} d^{7} - 2 \, a b^{6} c d^{8} + a^{2} b^{5} d^{9}\right )}}{b^{2} c d^{9} {\left | b \right |} - a b d^{10} {\left | b \right |}}\right )} + \frac {63 \, {\left (b^{8} c^{3} d^{6} - 3 \, a b^{7} c^{2} d^{7} + 3 \, a^{2} b^{6} c d^{8} - a^{3} b^{5} d^{9}\right )}}{b^{2} c d^{9} {\left | b \right |} - a b d^{10} {\left | b \right |}}\right )} {\left (b x + a\right )} + \frac {420 \, {\left (b^{9} c^{4} d^{5} - 4 \, a b^{8} c^{3} d^{6} + 6 \, a^{2} b^{7} c^{2} d^{7} - 4 \, a^{3} b^{6} c d^{8} + a^{4} b^{5} d^{9}\right )}}{b^{2} c d^{9} {\left | b \right |} - a b d^{10} {\left | b \right |}}\right )} {\left (b x + a\right )} + \frac {315 \, {\left (b^{10} c^{5} d^{4} - 5 \, a b^{9} c^{4} d^{5} + 10 \, a^{2} b^{8} c^{3} d^{6} - 10 \, a^{3} b^{7} c^{2} d^{7} + 5 \, a^{4} b^{6} c d^{8} - a^{5} b^{5} d^{9}\right )}}{b^{2} c d^{9} {\left | b \right |} - a b d^{10} {\left | b \right |}}\right )} \sqrt {b x + a}}{24 \, {\left (b^{2} c + {\left (b x + a\right )} b d - a b d\right )}^{\frac {3}{2}}} + \frac {105 \, {\left (b^{6} c^{3} - 3 \, a b^{5} c^{2} d + 3 \, a^{2} b^{4} c d^{2} - a^{3} b^{3} d^{3}\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{8 \, \sqrt {b d} d^{5} {\left | b \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(9/2)/(d*x+c)^(5/2),x, algorithm="giac")

[Out]

1/24*(((2*(b*x + a)*(4*(b^6*c*d^8 - a*b^5*d^9)*(b*x + a)/(b^2*c*d^9*abs(b) - a*b*d^10*abs(b)) - 9*(b^7*c^2*d^7
 - 2*a*b^6*c*d^8 + a^2*b^5*d^9)/(b^2*c*d^9*abs(b) - a*b*d^10*abs(b))) + 63*(b^8*c^3*d^6 - 3*a*b^7*c^2*d^7 + 3*
a^2*b^6*c*d^8 - a^3*b^5*d^9)/(b^2*c*d^9*abs(b) - a*b*d^10*abs(b)))*(b*x + a) + 420*(b^9*c^4*d^5 - 4*a*b^8*c^3*
d^6 + 6*a^2*b^7*c^2*d^7 - 4*a^3*b^6*c*d^8 + a^4*b^5*d^9)/(b^2*c*d^9*abs(b) - a*b*d^10*abs(b)))*(b*x + a) + 315
*(b^10*c^5*d^4 - 5*a*b^9*c^4*d^5 + 10*a^2*b^8*c^3*d^6 - 10*a^3*b^7*c^2*d^7 + 5*a^4*b^6*c*d^8 - a^5*b^5*d^9)/(b
^2*c*d^9*abs(b) - a*b*d^10*abs(b)))*sqrt(b*x + a)/(b^2*c + (b*x + a)*b*d - a*b*d)^(3/2) + 105/8*(b^6*c^3 - 3*a
*b^5*c^2*d + 3*a^2*b^4*c*d^2 - a^3*b^3*d^3)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*
b*d)))/(sqrt(b*d)*d^5*abs(b))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,x\right )}^{9/2}}{{\left (c+d\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(9/2)/(c + d*x)^(5/2),x)

[Out]

int((a + b*x)^(9/2)/(c + d*x)^(5/2), x)

________________________________________________________________________________________